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H I G H L I G H T S

• A new cooling strategy is investigated, which simplifies stack design.

• 3D multiphase simulation of a 5-cell stack with new cooling strategy was conducted.

• Two conditions were studied: finite vs. infinite convective heat transfer cooling.

• A maximum temperature variation of ~30 K is predicted in the stack.

• The new strategy needs to increase heat transfer coefficient for stack applications.
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A B S T R A C T

In this study, a new cooling strategy for a proton exchange membrane (PEM) fuel cell stack is investigated using
a three-dimensional (3D) multiphase non-isothermal model. The new cooling strategy follows that of the
Honda’s Clarity design and further extends to a cooling unit every five cells in stacks. The stack consists of 5 fuel
cells sharing the inlet and outlet manifolds for reactant gas flows. Each cell has 7-path serpentine flow fields with
a counter-flow configuration arranged for hydrogen and air streams. The coolant flow fields are set at the two
sides of the stack and are simplified as the convective heat transfer thermal boundary conditions. This study also
compares two thermal boundary conditions, namely limited and infinite coolant flow rates, and their impacts on
the distributions of oxygen, liquid water, current density and membrane hydration. The difference of local
temperature between these two cooling conditions is as much as 6.9 K in the 5-cell stack, while it is only 1.7 K in
a single cell. In addition, the increased vapor concentration at high temperature (and hence water saturation
pressure) dilutes the oxygen content in the air flow, reducing local oxygen concentration. The higher tem-
perature in the stack also causes low membrane hydration, and consequently poor cell performance and non-
uniform current density distribution, as disclosed by the simulation. The work indicates the new cooling strategy
can be optimized by increasing the heat transfer coefficient between the stack and coolant to mitigate local
overheating and cell performance reduction.

1. Introduction

PEM (proton exchange membrane, also known as polymer electro-
lyte membrane) fuel cell, converting chemical energy stored in hy-
drogen into electricity, has been widely used in a variety of applications
[1], including automobile (e.g. Mirai [2] and Clarity [3]), stationary [4]
and distributed [5] power sources, portable application [6], back-up
power [7], auxiliary power source for aerospace [8], etc. In particular,
FCV (fuel cell vehicle) received considerable attention in the last few
years. In 2017, Toyota started to sell its first commercial FCV named

“Mirai” [9]. Later Honda, Hyundai, GM and so on successively launched
their own FCV models, and the fuel cell engines of Honda Clarity [10]
and Hyundai NEXO [11] were selected as 2018 and 2019 Ward Ten
Engines, respectively. By the middle of 2018, there were about 5000
FCVs in the world [12].

In the operation of PEM fuel cell, multiple transport phenomena
occur, which are coupled with the electrochemical reactions. Proper
water [13] and thermal management is of primary importance to PEM
fuel cell operation for high efficiency and durability [14]. According to
the thermodynamic theory, it is known that the reversible voltage of a
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single PEM fuel cell is about 1.23 V [15]. In normal operation, the
output voltage will reduce to about 0.6–0.7 V with a power density of
1.0W cm−2 for state-of-the-art PEM fuel cell. In practical application, a
number of fuel cells are connected one by one in a stack to meet
practical power demand [16]. For example, the stack in FCV usually
consists of 300–400 cells [17]. In the operation of a stack, fuel cells are
interacted via the gas/liquid flows, temperature, and electric current, so
the stack performance is the average over all the fuel cells, which may
have different distributions of temperature, reactant gas, etc. [18]. This
also makes the stack’s water and thermal management much more
difficult than a single cell.

So far, a few studies aiming to reveal stack operation in detail has
been attempted. Devrim et al. [19] assembled an air-cooling 24-cell
stack and measured individual cell voltages and open circuit voltages
(OCVs), temperature profile and stack polarization curve. Amirfazli
et al. [20] developed an experimentally validated analytical/numerical

model to investigate the influence of manifold geometry on tempera-
ture uniformity in a PEM fuel stack. In addition, they introduced a
variable cross-sectional area manifold and concluded that the best
manifold cross-sectional areas are different for U and Z configurations.
Wen et al. [21] experimentally investigated the effects of the bolt
configuration and clamping torque on performance of a 10-cell stack.
They found that the maximum power density increases as the clamping
torque and bolt number thanks to reduction of the contact resistance.
Weng et al. [22] tested the performance of a fuel cell stack in both static
and dynamic modes. In the static mode, the peak power densities for 1,
2 and 4-cell stack are 0.55, 0.47 and 0.39W cm−2, respectively, and
cell performance decreases with increasing cell number in the stack. In
the dynamic mode, they indicated that additional actions are required,
e.g. purging water, to ensure high stack performance and maintain
stability. In addition, manifolds [23] play an important role in stack
operation providing that individual flow fields are connected at the

Nomenclature

Cp heat capacity (J mol−1 K−1)
D diffusion coefficient (m2 s−1)
EW equivalent weight of membrane
Erev reversible voltage (V)
F the Faraday’s constant (96,487 C mol−1)
h convective heat transfer coefficient (Wm−2 K−1) or latent

heat (J mol−1)
I current density (Am−2)
J volumetric reaction rate (Am−3)
Jion ionic current density (Am−2)
K intrinsic permeability (m2)
k relative permeability or thermal conductivity

(Wm−1 K−1)
M molar mass (kgmol−1)
nd EOD coefficient
P pressure (Pa)
S source term (kgm−3 s−1, mol m−3 s−1, Am−3 or Wm−3)
s liquid saturation
T temperature (K)
t time (s)
u velocity (m s−1)
Vout output voltage
Yi gas species mass fraction

Greek letters

water condensation/evaporation rate (s−1)
thickness (m)
porosity
overpotential (V)

e electric conductivity (S m−1)
ion ionic conductivity (S m−1)

membrane water content
µ dynamic viscosity (kgm−1 s−1)

density (kgm−3)
e electric potential (V)
ion ionic potential (V)

Subscripts and superscripts

a anode
c cathode
CL catalyst layer
d membrane water
d-v membrane water to vapor
e electrical
eq equivalent state
eff effective value
g gas phase
H2 hydrogen
H2O water
i gas species
ion ionic
l liquid phase
m mass
mem membrane
mw membrane water
O2 oxygen
T temperature
total total
u momentum
v-l vapor to liquid phase

Table 1
Cooling methods for PEM fuel cells [12,39,40].

Cooling Method Techniques/Materials Advantages

Heat spreaders Using highly thermal conductive material (e.g. copper) [41] or heat pipes [42] as heat
spreaders

– Simple system
– Small parasitic power
– Very high thermal conductivity using heat pipes

Air cooling [45] Separate air flow channels for cooling, suitable for 200W–2 kW stacks [39,40] – Simple system
– Potential integration for fuel cell oxygen supply

Liquid cooling [46] Cooling channels embedded in BPs using antifreeze coolant, suitable for stacks larger
than 5 kW [39,40]

– Large cooling capability
– Efficient cooling
– Potential integration for fuel cell water
management

Phase change material (PCM) Evaporative [43] or boiling [44] cooling utilizing latent heat absorption during phase
change

– Simplified system
– Elimination of coolant pump
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inlet and outlet manifolds [24]. Manifolds may subject to flooding due
to flow field expansion, affecting the uniformity of reactant gas supply
among individual cells, which has been shown in the results of Minard
et al. [25], Adroher and Wang [26] and Lewis and Wang [27].

Apart from experiment, three-dimensional (3D) multiphase non-
isothermal modeling [28] is a popular and important method to reveal
the complex transport phenomena in fuel cells. So far, a lot of 3D
multiphase non-isothermal models have been developed, e.g. Zhang
et al. [29], Wang and Wang [30], Perng and Wu [31], Wang and Chen
[32] and Wu and Ku [33], etc. However, 3D simulation at the stack
level is still limited due to computational burden [34]. Luo et al. [35]
developed a 3D multiphase model to understand the cold start process
in a fuel cell stack containing 3 single-channel cells. Macedo-Valencia
et al. [36] conducted 3D single-phase simulation of a 5-cell stack
without manifolds. Liu et al. [37] conducted 3D single-phase simulation
of a 6-cell stack. The bipolar plate (BP) was simplified as two porous
layers separated by a non-permeable plate. Le and Zhou [38] applied
the 3D multi-phase model to a 3-cell stack including manifolds. The
effect of liquid water on the stack performance was investigated.

Compared with internal combustion engine, PEM fuel cell stack cooling
is more challenging due to the small temperature difference between stack

and the ambient. Nevertheless, a very small amount of the heat produced in
PEM fuel cell stacks can be removed by the reactant gases [39]. Conse-
quently, increasing air stoichiometric ratio to cool down is usually suitable
for stacks below 100W [40]. For the stacks in the range of 200W–2 kW,
separate air cooling channel is necessary, and it needs to be replaced by
liquid coolant (e.g. water) for stacks larger than 5 kW [39,40]. Apart from
that, heat spreaders using thermally conductive graphite sheet [41] or heat
pipe [42] or PCM (phase change material), e.g. evaporation [43] or boiling
[44] have also been used in PEM fuel cell cooling. Table 1 listed the details
of each cooling method mentioned above.

In FCVs, the PEM fuel cell stacks are usually in the range of tens to
hundreds kilowatts and therefore liquid cooling is usually adopted. In
order to improve cooling for each fuel cell, both Toyota Mirai [47] and

Fig. 1. (a) Cooling design in the Honda Clarity Fuel Cell stack [49]; (b) New
cooling strategy: one cooling unit every five cells in this study [12].
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Conservation equations.
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Table 3
Source terms.
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Hyundai NEXO [48] design 1 cooling unit for each cell. As the FCV
maximum power demand is almost fixed, an apparent approach is to
increase fuel cell performance, which has been the ultimate goal in
many previous studies [17], for the stack volume reduction. In addition,
decreasing the dimensions of some parts (e.g. bipolar plates and cooling
units) is another major approach. A very recent review listed the typical
dimension range for fuel cell component (see Table 4 in Ref. [12]). At
the stack level, the simplifying of fastener is also important in reducing
the volume of PEM fuel cell stack. For instance, the new fuel cell stack
of Mirai uses 1-row (370 cells) to replace 2-rows (200 cells in each row)
in 2008 model stack to reduce the endplate area [2], and get rid of
spring using constant dimension tightening, instead of constant load
fastening in 2008 model stack. In fact, by using 3D fine mesh flow field,
high-performance MEA (membrane electrode assembly) and fastener
optimization, its stack power density increased from 1.4 kW/L
(0.83 kW/kg) in 2008 to 3.1 kW/L (2.0 kW/kg) [2]. Another approach,
which has been examined for practical fuel cell, is to combine coolant
and oxidant flow system [55]. However, this method cannot apply to
high power stack due to the low heat capacity of air.

In general, increasing the number of cells per cooling unit is helpful in
reducing stack volume but not favorable in local cooling. Honda Clarity
introduces a cooling strategy of 1 cooling unit every two cells (Fig. 1 (a))
[49], which significantly reduce the volume of stack cooling unit. In this
study, we extend the strategy to 5 cells per cooling unit (as a case study),
which will yield further volume reduction. This case will clearly show the
increased local temperature and reduced stack performance (For 2–3 cells
per cooling unit, the reduced performance is not evident). This study
shows that the new cooling strategy needs to be carefully designed for
practical use in order to fully utilize its potential of volume reduction. A
3D multiphase non-isothermal model was employed to investigate this
novel cooling strategy and temperature distribution, along with their

Table 4
Geometry parameters and operation conditions.

Parameter Value

Manifold height (mm) 2.0
Manifold width (mm) 13.0
BP height (mm) 1.2
Channel height (mm) 1.0
Channel width (mm) 1.0
Rib width (mm) 1.0
Channel number 21
MEA area (cm2) 50.4
MEA width (mm) 42.0
MEA length (mm) 120.0
GDL thickness (μm) 100.0
MPL thickness (μm) 20.0
CL thickness (μm) 10.0
Membrane thickness (μm) 25.4
Operation pressure (atm) Anode: 2.5; Cathode: 2.5
Temperature (K) 333.15
Relative humidity Anode: 1.0; Cathode: 1.0
Current density (A cm−2) 1.0
stoichiometric ratio Anode: 1.5; Cathode: 2.0

Fig. 2. Schematic and computational domain of the PEM fuel cell stack.

Table 5
Model parameters.

Parameter Value

Porosity (GDL, MPL) 0.6, 0.6
Transfer coefficient Anode: 0.5; Cathode: 0.5
Reference concentration (mol m−3) Hydrogen: 56.4; Oxygen:

3.39
Electric conductivity (MPL, CL, BP) 5000, 5000, 20,000
Membrane equivalent weight (kgmol−1) 1.1
Dry membrane density (kgm−3) 1980
Contact angle (GDL, MPL, CL) (°) 110, 120, 95
Permeability (GDL, MPL, CL, membrane) (m2) 2.0e−12, 1.0e−12,

1.0e−13, 2.0e−20
Condensation/evaporation rate (s−1) 100
Membrane water absorption or release rate (s−1) 1.3
Henry’s constant (Pam−3mol−1) Hydrogen: 4560; Oxygen:

28,000
Pt loading (mg cm−2) Anode: 0.4; Cathode: 0.4
Exchange current density (Am−2) Anode: 10; Cathode: 1.5e−5
Pt/C ratio 0.35
Agglomerate radius (μm) 1.0
Electrolyte film thickness (nm) 80
Electrolyte fraction in agglomerate 0.226
Effective Pt surface ratio 0.5
GDL thermal conductivity (Wm−1 K−1) 21, in-plane; 1.7, through-

plane
Thermal conductivity (MPL, CL, membrane, BP)

(Wm−1 K−1)
1.0, 1.0, 0.95, 20

Heat specific capacity (GDL, MPL, CL, membrane,
BP) (J kg−1 K−1)

568, 3300, 3300, 833, 1580
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impacts. For each cell, the MEA area is 50.4 cm2 and 7-path serpentine
flow fields were used for both anode and cathode. The inlet and outlet
manifolds are included in the simulation. Two cooling conditions were
investigated, including convective heat removal and constant tempera-
ture at the surfaces of the two endplates. Isothermal condition was also
presented for comparison. The 3D multi-phase non-isothermal simulation
in this study is of great significance to understanding of the complex heat
and mass transport phenomena in a stack. The differences of water and
thermal management at the stack and single fuel cell levels are also in-
vestigated in detail.

2. 3D multiphase non-isothermal model

2.1. Conservation equations

In this study, a 3D multiphase non-isothermal model was used to in-
vestigate the transport phenomena and electrochemical reactions in a
PEM fuel cell stack. Table 2 lists the conservation equations with the

corresponding source terms shown in Table 3. The continuity and Navier-
Stokes equations describe the gas flows, which are assumed to be laminar
because of low Reynolds numbers. The gas species conservation equations
are used for hydrogen, oxygen, water vapor, and nitrogen. An individual
liquid pressure conservation is added to describe the liquid water trans-
port in gas diffusion layers (GDLs), micro-porous layers (MPLs) and cat-
alyst layers (CLs), which are assumed to be homogenous porous media. In
GDLs, the anisotropic electric and heat conductivity in the in-plane and
through-plane directions are taken into account. A membrane water
conservation equation describes the water transport in the membrane and
CLs. The electron and proton transport is described by the electric and
ionic charge conservation equations. The energy conservation equation
predicts the temperature distribution in the stack. The model has been
validated with several experimental data for single fuel cell [50], in-
cluding the polarization curve and Ohmic loss. The only differences be-
tween the validated cases and this study are the computational domain
and operation conditions. Other model parameters are the same. Detail of
the model can be found in our previous study [50].

2.2. Boundary conditions

The mass flow rates and pressures are specified at the inlets and
outlets, respectively [51]. As to the electric potential, a reference vol-
tage (0 V) is set at the endplate surface of the cathode in the PEM fuel
cell stack, as shown in Fig. 2(b). At the endplate surface of the anode, a
constant output current density (Iout) is specified.

Cooling is important to the thermal management of fuel cell stacks
where a number of cells are packed together with limited access for
cooling. Table 1 compares a few cooling techniques for PEM fuel cells
[12,39,40]. A simplest strategy is to add a separate cooling flow field for
each of the cell [52], which however adds more costs to stack fabrication
and is more prone to coolant leakage. Alternative is to add a cooling unit
every a few fuel cells to reduce the number of required cooling units. In
this study, we propose a cooling unit serves five cells, as shown in
Fig. 1(b) and 2. The cooling conditions at the two sides of this stack are

Fig. 3. Temperature distribution in the cathode flow field (Tcoolant= 333.15 K,
h=3000Wm−2 K−1).

Fig. 4. Water vapor concentration distributions in the cathode flow fields.

Fig. 5. Oxygen concentration distributions in the cathode flow fields.
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simplified as the convective thermal boundary conditions at the endplate
surfaces. In practice, the optimal temperature of PEM fuel cell in FCVs
usually ranges from 60 to 95 °C. Deionized water is a typical coolant,
which is forced into stack by coolant pump. This corresponds to the forced
convection heat transfer with a heat transfer coefficient usually ranging
from 500 to 10,000Wm−2K−1 [53]. We select the value of
3000Wm−2 K−1 for a case study. In general, this coefficient is dependent
on a number of parameters such as the Pr and Re numbers, as given by
typical correlations of the Nusselt number. While the coolant temperature
corresponding to the lowest optimal operation temperature of PEM fuel
cell (333.15 K) is selected in this study. Meanwhile, the coolant flow fields
at two endplates of the stack are not considered in the computational

domain, as seen in Fig. 2. Their effects are simplified as convective heat
transfer boundary conditions, in which the coolant temperature and
corresponding convective heat transfer coefficient are set as 333.15 K and
3000Wm−2 K−1, respectively. Specifically, if the heat transfer coefficient
is infinite large, the temperatures at the two endplate surfaces will equal
to that of the coolant. As to other walls, the natural convection condition
is specified, i.e. the room temperature of 298.15 K and heat transfer
coefficient of 20Wm−2K−1.

2.3. Numerical implementation

The schematic and computational domain of the short PEM fuel cell

Fig. 6. Oxygen concentrations in the middle plane of the cathode CLs (Tcoolant= 333.15 K, h=3000Wm−2 K−1).

Fig. 7. Liquid saturation in the middle plane of the cathode CLs (Tcoolant= 333.15 K, h=3000Wm−2 K−1).
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stack in this study is shown in Fig. 2. There are 5 cells in the stack with
each cell having a MEA area of 50.4 cm2 and a length/width of 120.0/
42.0mm. Both anode and cathode flow fields are 7-path serpentine
with two U-turns, as shown in Fig. 2(a). The channel cross section size is
1.0 mm×1.0mm. Other geometry parameters and operation condi-
tions and model parameters are listed in Tables 4 and 5. The hydrogen
and air flows are arranged in the counter flow configuration. Total 3.14
million of computational cells are employed for this computational
study. Each case took about 24 h using 8 processors on a small work-
station (24 processors, Intel (R) Xeon (R) CPU E5-2620 v3 @ 2.40 GHz
and 32 GB DDR RAM).

3. Results and discussion

3.1. Effect of temperature

In this study, the operation current density is kept as 1.0 A cm−2 for
all simulation cases. Fig. 3 shows the temperature distribution in the
cathode flow field at the convective thermal boundary conditions

Fig. 8. Current density concentration in the middle plane of the membranes (Tcoolant= 333.15 K, h=3000Wm−2 K−1).

Fig. 9. Performance of each single cell in the stack under two thermal boundary
conditions in comparison with isothermal operation.

Fig. 10. Temperature distributions in the middle plane of the cathode CLs
at the two thermal boundary conditions, (a): Tcoolant= 333.15 K,
h=3000Wm−2 K−1; (b): Tsurface= 333.15 K.
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(Tcoolant= 333.15 K, h=3000Wm−2 K−1). It is seen that the max-
imum temperature difference of higher than 30 K is present with the
3rd cell showing the maximum temperature. Comparing with the iso-
thermal case (333.15 K), the much higher temperature in the non-iso-
thermal case results in a much higher water vapor concentration due to
the temperature dependence of the water saturation pressure, as shown
in Fig. 4. Specially, the water concentrations in the 2nd, 3rd and 4th
cells are much higher than those in the 1st and 5th cells. As a con-
sequence, the oxygen concentration in the 3rd cell is the lowest due to
the water vapor dilution, which can be seen in Fig. 5(a). As to the
isothermal case, Fig. 5(b) shows that the oxygen concentrations in these
5 cells are almost the same. Thus, the temperature variation is the main
cause to the non-uniform oxygen concentration distribution in the
stack.

Fig. 6 shows the oxygen concentration distribution in the middle
plane of the cathode CL. For comparison, a single-cell stack is also si-
mulated at the same operation conditions and thermal boundary condi-
tions. Overall, the oxygen concentration gradually decreases from the air
inlet to outlet owing to the electrochemical reaction consumption. In
addition, the oxygen concentration in the 3rd cell is the lowest, the 2nd
and 4th cells are higher, and the 1st and 5th cells are the highest. This is
consistent with the aforementioned conclusion drawn from Fig. 5. Ad-
ditionally, the oxygen concentration in the stack is slightly lower than
that in the single-cell case. This indicates that the reactant gas distribution
in the stack may be worse than single-cell case because of higher tem-
perature, which will be discussed in detail in the next section.

The liquid saturation distribution in the 5-cell stack is shown in
Fig. 7, which shows that the liquid saturation in the 3rd cell is lowest
because of the local high temperature. Fig. 8 shows the current density

distribution in the middle plane of the membrane, indicating large
differences among the cells in the stack. The 3rd cell shows the most
non-uniform current distribution. The current density in the upstream
area is lower than that in the downstream area in this cell because of
the low membrane water content caused by the high temperature [54].

3.2. Effect of thermal boundary condition

Fig. 9 shows the output voltages of each cell in this 5-cell stack for
the two thermal boundary conditions, along with the isothermal case.
For the isothermal case, the output voltages are almost the same among
individual cells and mostly the highest except the 1st one for the three
cases. There is a large variation in the output voltage among the cells in
the stack for the non-isothermal cases. In addition, the variation in the
case of the convective boundary condition is much larger than that of
the constant surface temperature boundary condition. The latter cor-
responds to the lower temperature difference in the stack, as shown in
Figs. 10 and 11. In general, the 3rd cell shows the worst performance,
the 2nd and 4th cells are better and 1st and 5th cells are the best, as a
result of the non-uniform oxygen concentration distribution as shown in
Fig. 12, consistent with Fig. 5.

Fig. 10 shows the temperature distribution in the middle plane of
the cathode CL. It is seen that the temperatures in all the cells of the
stack are higher than that of the single-cell case. The temperature
variation is also significant for the stack, especially for the 3rd cell. In
the 2nd, 3rd and 4th cells, the peak temperature occurs in the down-
stream area because of the high current density in local (Fig. 8). In
addition, Fig. 11 shows the temperature profiles for the five cells in the
stack, whose shapes are consistent with that in previous studies, e.g.
Hashmi [40], Wu et al. [55] and Pei et al. [56]. In particular, the
maximum temperatures in the single cell and 5-cell stack are about 2
and 25 K, respectively, which are almost the same as that shown in Ref.
[40]. It can be seen in Fig. 11 that the temperature difference at the
same location between the two different thermal boundary conditions is
about 6.9 K. In comparison, the difference in the single cell is only
about 1.7 K between the two boundary conditions. This indicates that
thermal management is much more important to a stack than a single
cell.

In addition, the high temperature in the stack also cause low
membrane hydration and water content, as shown in Fig. 13. This is a
main cause to the low cell performance, especially for the 3rd cell in
this stack. The low membrane water content in the upstream area also
decreases local current density, increasing the non-uniform distribu-
tion, as shown in Fig. 8.

4. Conclusions

In this study, a three-dimensional (3D) multiphase non-isothermal
model was employed to investigate a new cooling strategy for fuel cell
stacks, i.e. one cooling unit every 5 fuel cells, which will significantly
reduce the stack volume and weight. Two thermal boundary conditions
were simulated and compared: one is the convective thermal boundary,
and the other is the constant temperature boundary. It was found that
the maximum temperature variation in this stack is as large as 30 K,
which is a main cause to the observed non-uniform distributions of the
oxygen concentration, liquid water, current density and membrane
hydration among the 5 fuel cells. In general, the middle cell in the stack
showed the lowest performance when the impact of non-isothermal
condition is taken into account. For the isothermal case, the perfor-
mances of individual cells were almost the same, so as the oxygen
concentration distributions. In addition, it was found that the non-
uniform oxygen concentration distribution in the stack resulted from
the water vapor dilution due to the increased water saturation pressure
at high temperature. The poor and non-uniform cell performances in
this 5-cell stack were mainly caused by the non-uniform and diluted
oxygen concentration distribution and low membrane hydration. It is

Fig. 11. Temperature profiles for the five cells in the stack.

Fig. 12. Oxygen concentration of each single cell in the stack at the two
thermal boundary conditions in comparison with the isothermal operation.
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important to carefully design the new cooling strategy for fuel cell
stacks using 3D numerical simulation tools and a high heat transfer
coefficient between the stack and coolant is desirable in this strategy to
mitigate local overheating and cell performance reduction.
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